10#include "factory/factory.h"
114 case LE:
return "<=";
115 case GE:
return ">=";
124 if (
s[1]==
'\0')
return s[0];
125 else if (
s[2]!=
'\0')
return 0;
128 case '.':
if (
s[1]==
'.')
return DOTDOT;
134 case '+':
if (
s[1]==
'+')
return PLUSPLUS;
138 case '<':
if (
s[1]==
'=')
return LE;
141 case '>':
if (
s[1]==
'=')
return GE;
143 case '!':
if (
s[1]==
'=')
return NOTEQUAL;
210 memset(buffer,0,
sizeof(buffer));
220 Print(
"..., %d char(s)",
l);
243 Print(
" %d x %d (%s)",
269 ((
intvec*)(
v->Data()))->cols());
break;
427 package savePack=currPack;
434 if (
strcmp(what,
"all")==0)
467 Werror(
"%s is undefined",what);
501 package save_p=currPack;
535 WarnS(
"Gerhard, use the option command");
572 rc +=
mm->rows() *
mm->cols();
576 rc+=((
lists)
v->Data())->nr+1;
597 WerrorS(
"write: need at least two arguments");
607 Werror(
"cannot write to %s",
s);
634 Werror(
"can not map from ground field of %s to current ground field",
714 WerrorS(
"argument of a map must have a name");
771 poly
p=(poly)
tmpW.data;
788 Warn(
"possible OVERFLOW in map, max exponent is %ld",
currRing->bitmask/2);
808 theMap->preimage=(
char*)1L;
866 Print(
"//defining: %s as %d-th syzygy module\n",
s,
i+1);
871 Warn(
"cannot define %s",
s);
983 l->m[0].rtyp=u->
Typ();
984 l->m[0].data=u->
Data();
987 l->m[0].attribute=*a;
994 l->m[0].attribute=
NULL;
1032 if (weights!=
NULL)
delete weights;
1056 if (weights!=
NULL)
delete weights;
1063#define BREAK_LINE_LENGTH 80
1163 res->m[
i].data = (
void *)
save->set;
1175 res->m[
i].data = (
void *)
save->set;
1201 const char *
id =
name->name;
1206 WerrorS(
"object to declare is not a name");
1216 Werror(
"can not define `%s` in other package",
name->name);
1269 tmp.data=
at->CopyA();
1277 WerrorS(
"branchTo can only occur in a proc");
1288 short *t=(
short*)
omAlloc(
l*
sizeof(
short));
1292 for(
i=1;
i<
l;
i++,
h=
h->next)
1297 Werror(
"arg %d is not a string",
i);
1306 Werror(
"arg %d is not a type name",
i);
1313 Werror(
"last(%d.) arg.(%s) is not a proc(but %s(%d)), nesting=%d",
1326 if(
pi->data.s.body==
NULL )
1451 WerrorS(
"object with a different type exists");
1469 Warn(
"'%s': no such identifier\n",
v->
name);
1472 package frompack=v->req_packhdl;
1500 Werror(
"`%s` not found",
v->Name());
1518 Werror(
"cannot export:%s of internal type %d",
v->
name,
v->rtyp);
1544 Werror(
"cannot export:%s of internal type %d",
v->
name,
v->rtyp);
1595 WerrorS(
"no ring active (9)");
1637 WarnS(
"package not found\n");
1657 #ifndef TEST_ZN_AS_ZP
1668 r->cf->has_simple_Inverse=1;
1681 r->block0 = (
int *)
omAlloc0(3 *
sizeof(
int *));
1682 r->block1 = (
int *)
omAlloc0(3 *
sizeof(
int *));
1701 if ((r==
NULL)||(r->VarOffset==
NULL))
1740 L->
m[0].
data=(
void *)(
long)r->cf->ch;
1746 for(
i=0;
i<r->N;
i++)
1769 if (r->block1[
i]-r->block0[
i] >=0 )
1771 j=r->block1[
i]-r->block0[
i];
1774 if ((r->wvhdl!=
NULL) && (r->wvhdl[
i]!=
NULL))
1776 for(;
j>=0;
j--) (*iv)[
j]=r->wvhdl[
i][
j];
1778 else switch (r->order[
i])
1787 for(;
j>=0;
j--) (*iv)[
j]=1;
1797 LLL->
m[1].
data=(
void *)iv;
1798 LL->m[
i].data=(
void *)LLL;
1812 L->
m[3].
data=(
void *)q;
1831 L->
m[0].
data=(
void *)0;
1865 L->
m[0].
data=(
void *)0;
1908 LL->m[1].data=(
void *) C->modExponent;
1935 LL->m[1].data=(
void *)
R->cf->modExponent;
1948 WerrorS(
"ring with polynomial data must be the base ring or compatible");
1959 else if ( C->extRing!=
NULL )
1969 Lc->m[0].data=(
void*)(
long)C->m_nfCharQ;
1976 Lc->m[1].data=(
void*)
Lv;
1987 Loo->m[1].data=(
void *)iv;
1990 Lo->m[0].data=(
void*)
Loo;
1993 Lc->m[2].data=(
void*)
Lo;
1999 res->data=(
void*)
Lc;
2004 res->data=(
void *)(
long)C->ch;
2018 for(
i=0;
i<r->N;
i++)
2045 assume( r->block0[
i] == r->block1[
i] );
2046 const int s = r->block0[
i];
2052 else if (r->block1[
i]-r->block0[
i] >=0 )
2054 int bl=
j=r->block1[
i]-r->block0[
i];
2062 j+=r->wvhdl[
i][
bl+1];
2065 if ((r->wvhdl!=
NULL) && (r->wvhdl[
i]!=
NULL))
2067 for(;
j>=0;
j--) (*iv)[
j]=r->wvhdl[
i][
j+(
j>
bl)];
2069 else switch (r->order[
i])
2078 for(;
j>=0;
j--) (*iv)[
j]=1;
2088 LLL->
m[1].
data=(
void *)iv;
2089 LL->m[
i].data=(
void *)LLL;
2096 if (r->qideal==
NULL)
2127 WerrorS(
"ring with polynomial data must be the base ring or compatible");
2145 L->
m[0].
data=(
char*)r->cf; r->cf->ref++;
2160 || (r->qideal !=
NULL)
2167 WerrorS(
"ring with polynomial data must be the base ring or compatible");
2192 else if ( r->cf->extRing!=
NULL )
2202 Lc->m[0].data=(
void*)(
long)r->cf->m_nfCharQ;
2209 Lc->m[1].data=(
void*)
Lv;
2220 Loo->m[1].data=(
void *)iv;
2223 Lo->m[0].data=(
void*)
Loo;
2226 Lc->m[2].data=(
void*)
Lo;
2237 L->
m[0].
data=(
void *)(
long)r->cf->ch;
2242 L->
m[0].
data=(
void *)r->cf;
2257 WerrorS(
"invalid coeff. field description, expecting 0");
2265 WerrorS(
"invalid coeff. field description, expecting precision list");
2273 WerrorS(
"invalid coeff. field description list, expected list(`int`,`int`)");
2276 int r1=(
int)(
long)
LL->m[0].data;
2277 int r2=(
int)(
long)
LL->m[1].data;
2287 WerrorS(
"invalid coeff. field description, expecting parameter name");
2308 unsigned int modExponent = 1;
2338 modExponent = (
unsigned long)
LL->m[1].data;
2348 WerrorS(
"Wrong ground ring specification (module is 1)");
2351 if (modExponent < 1)
2353 WerrorS(
"Wrong ground ring specification (exponent smaller than 1)");
2362 else if (modExponent > 1)
2365 if ((
mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*
sizeof(
unsigned long)))
2376 info.exp= modExponent;
2387 info.exp= modExponent;
2400 for(
i=0;
i<
R->N-1;
i++)
2402 for(
j=
i+1;
j<
R->N;
j++)
2455 poly
p=(poly)
v->m[
i].Data();
2461 Werror(
"var name %d must be a string or a ring variable",
i+1);
2467 Werror(
"var name %d must be `string` (not %d)",
i+1,
v->m[
i].Typ());
2474 WerrorS(
"variable must be given as `list`");
2490 for (
int j=0;
j < n-1;
j++)
2497 &&(
strcmp((
char*)
vv->m[0].Data(),
"L")==0))
2506 Werror(
"illegal argument for pseudo ordering L: %d",
vv->m[1].Typ());
2513 if (bitmask!=0) n--;
2529 WerrorS(
"ordering must be list of lists");
2536 if (
strcmp((
char*)
vv->m[0].Data(),
"L")==0)
2545 Werror(
"ordering name must be a (string,intvec), not (string,%s)",
Tok2Cmdname(
vv->m[1].Typ()));
2550 if (
j_in_R==0)
R->block0[0]=1;
2573 int l=
si_max(1,(
int)(
long)
vv->m[1].Data());
2575 for(
int i=0;
i<
l;
i++) (*iv)[
i]=1;
2605 Print(
"R->block0[j_in_R]=%d,N=%d\n",
R->block0[
j_in_R],
R->N);
2665 if (((*iv)[
i]!=1)&&(
iv_len!=1))
2668 Warn(
"ignore weight %d for ord %d (%s) at pos %d\n>>%s<<",
2692 const int s = (*iv)[0];
2703 WerrorS(
"ring order not implemented");
2711 WerrorS(
"ordering name must be a (string,intvec)");
2737 Werror(
"ordering incomplete: size (%d) should be %d",
R->block1[
j_in_R],
R->N);
2743 Werror(
"not enough variables (%d) for ordering block %d, scanned so far:",
R->N,
j_in_R+1);
2773 WerrorS(
"ordering must be given as `list`");
2776 if (bitmask!=0) {
R->bitmask=bitmask;
R->wanted_maxExp=bitmask; }
2808 int ch = (
int)(
long)L->
m[0].
Data();
2818 Warn(
"%d is invalid characteristic of ground field. %d is used.", ch,
l);
2821 #ifndef TEST_ZN_AS_ZP
2832 R->cf->has_simple_Inverse=1;
2851 int ch = (
int)(
long)
LL->m[0].Data();
2861 param.GFPar_name = (
const char*)(((
lists)(
LL->m[1].Data()))->m[0].Data());
2874 WerrorS(
"could not create the specified coefficient field");
2878 if( extRing->qideal !=
NULL )
2898 WerrorS(
"coefficient field must be described by `int` or `list`");
2904 WerrorS(
"could not create coefficient field described by the input!");
2916 #ifdef HAVE_SHIFTBBA
2924 if ((bitmask!=0)&&(
R->wanted_maxExp==0))
R->wanted_maxExp=bitmask;
2937 WerrorS(
"coefficient fields must be equal if q-ideal !=0");
2974 WerrorS(
"coefficient fields must be equal if q-ideal !=0");
3019 WerrorS(
"q-ideal must be given as `ideal`");
3088 int n=(
int)(
long)
b->Data();
3096 if ((d>n) || (d<1) || (n<1))
3184 if ((fullres==
NULL) && (minres==
NULL))
3238 syzstr->fullres = fullres;
3304 res->data=(
char *)iv;
3312 for (
i = n;
i!=0;
i--)
3313 (*iv)[
i-1] =
x[
i + n + 1];
3331 res->data=(
void *)
b;
3357 spec.
mu = (
int)(
long)(
l->m[0].Data( ));
3358 spec.
pg = (
int)(
long)(
l->m[1].Data( ));
3359 spec.
n = (
int)(
long)(
l->m[2].Data( ));
3367 for(
int i=0;
i<spec.
n;
i++ )
3370 spec.
w[
i] = (*mul)[
i];
3401 for(
int i=0;
i<spec.
n;
i++ )
3405 (*mult)[
i] = spec.
w[
i];
3415 L->
m[0].
data = (
void*)(
long)spec.
mu;
3416 L->
m[1].
data = (
void*)(
long)spec.
pg;
3417 L->
m[2].
data = (
void*)(
long)spec.
n;
3468 WerrorS(
"the list is too short" );
3471 WerrorS(
"the list is too long" );
3475 WerrorS(
"first element of the list should be int" );
3478 WerrorS(
"second element of the list should be int" );
3481 WerrorS(
"third element of the list should be int" );
3484 WerrorS(
"fourth element of the list should be intvec" );
3487 WerrorS(
"fifth element of the list should be intvec" );
3490 WerrorS(
"sixth element of the list should be intvec" );
3494 WerrorS(
"first element of the list should be positive" );
3497 WerrorS(
"wrong number of numerators" );
3500 WerrorS(
"wrong number of denominators" );
3503 WerrorS(
"wrong number of multiplicities" );
3507 WerrorS(
"the Milnor number should be positive" );
3510 WerrorS(
"the geometrical genus should be nonnegative" );
3513 WerrorS(
"all numerators should be positive" );
3516 WerrorS(
"all denominators should be positive" );
3519 WerrorS(
"all multiplicities should be positive" );
3523 WerrorS(
"it is not symmetric" );
3526 WerrorS(
"it is not monotonous" );
3530 WerrorS(
"the Milnor number is wrong" );
3533 WerrorS(
"the geometrical genus is wrong" );
3537 WerrorS(
"unspecific error" );
3573 ( fast==2 ? 2 : 1 ) );
3583 ( fast==0 || (*node)->weight<=
smax ) )
3628 (*node)->nf =
search->nf;
3645 if( (*node)->weight<=(
Rational)1 ) pg++;
3646 if( (*node)->weight==
smax ) z++;
3650 node = &((*node)->next);
3701 n = ( z > 0 ? 2*n - 1 : 2*n );
3745 (*den) [
n2] = (*den)[
n1];
3746 (*mult)[
n2] = (*mult)[
n1];
3754 if( fast==0 || fast==1 )
3778 (*L)->m[0].data = (
void*)(
long)
mu;
3795 (*L)->m[0].data = (
void*)(
long)
mu;
3796 (*L)->m[1].data = (
void*)(
long)pg;
3797 (*L)->m[2].data = (
void*)(
long)n;
3798 (*L)->m[3].data = (
void*)
nom;
3799 (*L)->m[4].data = (
void*)
den;
3800 (*L)->m[5].data = (
void*)
mult;
3809 #ifdef SPECTRUM_DEBUG
3810 #ifdef SPECTRUM_PRINT
3811 #ifdef SPECTRUM_IOSTREAM
3812 cout <<
"spectrumCompute\n";
3813 if( fast==0 )
cout <<
" no optimization" << endl;
3814 if( fast==1 )
cout <<
" weight optimization" << endl;
3815 if( fast==2 )
cout <<
" symmetry optimization" << endl;
3818 if( fast==0 )
fputs(
" no optimization\n",
stdout );
3819 if( fast==1 )
fputs(
" weight optimization\n",
stdout );
3820 if( fast==2 )
fputs(
" symmetry optimization\n",
stdout );
3864 #ifdef SPECTRUM_DEBUG
3865 #ifdef SPECTRUM_PRINT
3866 #ifdef SPECTRUM_IOSTREAM
3867 cout <<
"\n computing the Jacobi ideal...\n";
3869 fputs(
"\n computing the Jacobi ideal...\n",
stdout );
3878 #ifdef SPECTRUM_DEBUG
3879 #ifdef SPECTRUM_PRINT
3880 #ifdef SPECTRUM_IOSTREAM
3894 #ifdef SPECTRUM_DEBUG
3895 #ifdef SPECTRUM_PRINT
3896 #ifdef SPECTRUM_IOSTREAM
3898 cout <<
" computing a standard basis..." << endl;
3901 fputs(
" computing a standard basis...\n",
stdout );
3909 #ifdef SPECTRUM_DEBUG
3910 #ifdef SPECTRUM_PRINT
3913 #ifdef SPECTRUM_IOSTREAM
3961 #ifdef SPECTRUM_DEBUG
3962 #ifdef SPECTRUM_PRINT
3963 #ifdef SPECTRUM_IOSTREAM
3964 cout <<
"\n computing the highest corner...\n";
3966 fputs(
"\n computing the highest corner...\n",
stdout );
3990 #ifdef SPECTRUM_DEBUG
3991 #ifdef SPECTRUM_PRINT
3992 #ifdef SPECTRUM_IOSTREAM
4005 #ifdef SPECTRUM_DEBUG
4006 #ifdef SPECTRUM_PRINT
4007 #ifdef SPECTRUM_IOSTREAM
4008 cout <<
"\n computing the newton polygon...\n";
4010 fputs(
"\n computing the newton polygon...\n",
stdout );
4017 #ifdef SPECTRUM_DEBUG
4018 #ifdef SPECTRUM_PRINT
4027 #ifdef SPECTRUM_DEBUG
4028 #ifdef SPECTRUM_PRINT
4029 #ifdef SPECTRUM_IOSTREAM
4030 cout <<
"\n computing the weight corner...\n";
4032 fputs(
"\n computing the weight corner...\n",
stdout );
4042 #ifdef SPECTRUM_DEBUG
4043 #ifdef SPECTRUM_PRINT
4044 #ifdef SPECTRUM_IOSTREAM
4057 #ifdef SPECTRUM_DEBUG
4058 #ifdef SPECTRUM_PRINT
4059 #ifdef SPECTRUM_IOSTREAM
4060 cout <<
"\n computing NF...\n" << endl;
4071 #ifdef SPECTRUM_DEBUG
4072 #ifdef SPECTRUM_PRINT
4074 #ifdef SPECTRUM_IOSTREAM
4102 WerrorS(
"polynomial is zero" );
4105 WerrorS(
"polynomial has constant term" );
4108 WerrorS(
"not a singularity" );
4111 WerrorS(
"the singularity is not isolated" );
4114 WerrorS(
"highest corner cannot be computed" );
4117 WerrorS(
"principal part is degenerate" );
4123 WerrorS(
"unknown error occurred" );
4140 WerrorS(
"only works for local orderings" );
4148 WerrorS(
"does not work in quotient rings" );
4194 WerrorS(
"only works for local orderings" );
4199 WerrorS(
"does not work in quotient rings" );
4258 else if(
l->nr > 5 )
4296 int mu = (
int)(
long)(
l->m[0].Data( ));
4297 int pg = (
int)(
long)(
l->m[1].Data( ));
4298 int n = (
int)(
long)(
l->m[2].Data( ));
4309 if( n !=
num->length( ) )
4313 else if( n !=
den->length( ) )
4337 for(
i=0;
i<n;
i++ )
4339 if( (*
num)[
i] <= 0 )
4343 if( (*
den)[
i] <= 0 )
4347 if( (*
mul)[
i] <= 0 )
4359 for(
i=0,
j=n-1;
i<=
j;
i++,
j-- )
4362 (*den)[
i] != (*den)[
j] ||
4363 (*mul)[
i] != (*mul)[
j] )
4373 for(
i=0,
j=1;
i<n/2;
i++,
j++ )
4375 if( (*
num)[
i]*(*den)[
j] >= (*num)[
j]*(*den)[
i] )
4385 for(
mu=0,
i=0;
i<n;
i++ )
4390 if(
mu != (
int)(
long)(
l->m[0].Data( )) )
4399 for( pg=0,
i=0;
i<n;
i++ )
4401 if( (*
num)[
i]<=(*den)[
i] )
4407 if( pg != (
int)(
long)(
l->m[1].Data( )) )
4436 WerrorS(
"first argument is not a spectrum:" );
4441 WerrorS(
"second argument is not a spectrum:" );
4478 WerrorS(
"first argument is not a spectrum" );
4483 WerrorS(
"second argument should be positive" );
4520 WerrorS(
"first argument is not a spectrum" );
4525 WerrorS(
"second argument is not a spectrum" );
4535 res->data = (
void*)(
long)(
s1.mult_spectrumh(
s2 ));
4537 res->data = (
void*)(
long)(
s1.mult_spectrum(
s2 ));
4568 WerrorS(
"Ground field not implemented!");
4588 LP->
m= (
int)(
long)(
v->Data());
4594 LP->
n= (
int)(
long)(
v->Data());
4600 LP->
m1= (
int)(
long)(
v->Data());
4606 LP->
m2= (
int)(
long)(
v->Data());
4612 LP->
m3= (
int)(
long)(
v->Data());
4615 Print(
"m (constraints) %d\n",LP->
m);
4616 Print(
"n (columns) %d\n",LP->
n);
4640 lres->m[4].data=(
void*)(
long)LP->
m;
4643 lres->m[5].data=(
void*)(
long)LP->
n;
4676 gls= (poly)(arg1->
Data());
4677 int howclean= (
int)(
long)arg3->
Data();
4681 WerrorS(
"Input polynomial is constant!");
4690 rlist->Init( r[0] );
4691 for(
int i=r[0];
i>0;
i--)
4706 WerrorS(
"Ground field not implemented!");
4713 unsigned long int ii = (
unsigned long int)arg2->
Data();
4740 WerrorS(
"The input polynomial must be univariate!");
4750 for (
i= deg;
i >= 0;
i-- )
4765 for (
i=deg;
i >= 0;
i--)
4773 roots->
solver( howclean );
4781 rlist->Init( elem );
4785 for (
j= 0;
j < elem;
j++ )
4794 for (
j= 0;
j < elem;
j++ )
4832 int tdg= (
int)(
long)arg3->
Data();
4839 WerrorS(
"Last input parameter must be > 0!");
4847 if (
m != (
int)
pow((
double)tdg+1,(
double)n) )
4849 Werror(
"Size of second input ideal must be equal to %d!",
4850 (
int)
pow((
double)tdg+1,(
double)n));
4857 WerrorS(
"Ground field not implemented!");
4863 for (
i= 0;
i < n;
i++ )
4872 WerrorS(
"Elements of first input ideal must not be equal to -1, 0, 1!");
4881 WerrorS(
"Elements of first input ideal must be numbers!");
4889 for (
i= 0;
i <
m;
i++ )
4898 WerrorS(
"Elements of second input ideal must be numbers!");
4928 else gls= (
ideal)(
v->Data());
4943 if (gls->m[
j]!=
NULL)
4949 WerrorS(
"Newton polytope not of expected dimension");
4963 unsigned long int ii=(
unsigned long int)
v->Data();
4971 else howclean= (
int)(
long)
v->Data();
5000 WerrorS(
"Error occurred during matrix setup!");
5007 smv=
ures->accessResMat()->getSubDet();
5013 WerrorS(
"Unsuitable input ideal: Minor of resultant matrix is singular!");
5031 int c=
iproots[0]->getAnzElems();
5049 WerrorS(
"Solver was unable to find any roots!");
5090 for (
j= 0;
j < elem;
j++ )
5152 Warn(
"deleting denom_list for ring change to %s",
IDID(
h));
5194 if((*iv)[
i]>=0) { neg=
FALSE;
break; }
5199 (*iv)[
i]= - (*iv)[
i];
5208 if((*iv)[
i]>=0) { neg=
FALSE;
break; }
5213 (*iv)[
i]= -(*iv)[
i];
5228 (*iv2)[2]=iv->
length()-2;
5246 (*iv2)[2]=iv->
length()-2;
5287 (*iv)[2] += (*iv2)[2];
5302 int last = 0, o=0, n = 1,
i=0, typ = 1,
j;
5314 R->wanted_maxExp=(*iv)[2]*2+1;
5327 WerrorS(
"invalid combination of orderings");
5335 WerrorS(
"more than one ordering c/C specified");
5341 R->block0=(
int *)
omAlloc0(n*
sizeof(
int));
5342 R->block1=(
int *)
omAlloc0(n*
sizeof(
int));
5348 for (
j=0;
j < n-1;
j++)
5379 R->block0[n] =
last+1;
5382 R->wvhdl[n][
i-2] = (*iv)[
i];
5384 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5397 R->block0[n] =
last+1;
5399 else last += (*iv)[0];
5404 if (weights[
i]==0) weights[
i]=typ;
5416 const int s = (*iv)[2];
5426 const int s = (*iv)[2];
5428 if( 1 <
s ||
s < -1 )
return TRUE;
5444 R->block0[n] =
last+1;
5449 R->wvhdl[n][
i-2]=(*iv)[
i];
5451 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5453 last=
R->block0[n]-1;
5458 R->block0[n] =
last+1;
5461 if (
R->block1[n]-
R->block0[n]+2>=iv->
length())
5462 WarnS(
"missing module weights");
5463 for (
i=2;
i<=(
R->block1[n]-
R->block0[n]+2);
i++)
5465 R->wvhdl[n][
i-2]=(*iv)[
i];
5467 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5469 R->wvhdl[n][
i-2]=iv->
length() -3 -(
R->block1[n]-
R->block0[n]);
5472 R->wvhdl[n][
i-1]=(*iv)[
i];
5474 last=
R->block0[n]-1;
5479 R->block0[n] =
last+1;
5487 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5489 last=
R->block0[n]-1;
5496 if (
Mtyp==-1) typ = -1;
5500 R->wvhdl[n][
i-2]=(*iv)[
i];
5502 R->block0[n] =
last+1;
5505 for(
i=
R->block1[n];
i>=
R->block0[n];
i--)
5507 if (weights[
i]==0) weights[
i]=typ;
5517 Werror(
"Internal Error: Unknown ordering %d", (*iv)[1]);
5524 Werror(
"mismatch of number of vars (%d) and ordering (>=%d vars)",
5532 for(
i=1;
i<=
R->N;
i++)
5533 {
if (weights[
i]<0) {
R->OrdSgn=-1;
break; }}
5547 if (
R->block1[n] !=
R->N)
5558 R->block0[n] <=
R->N)
5560 R->block1[n] =
R->N;
5564 Werror(
"mismatch of number of vars (%d) and ordering (%d vars)",
5583 *
p = (
char*)sl->
name;
5636 const int P =
pn->listLength();
5645 const int pars =
pnn->listLength();
5651 WerrorS(
"parameter expected");
5670 int ch = (
int)(
long)
pn->Data();
5681 if ((ch<2)||(ch!=
ch2))
5683 Warn(
"%d is invalid as characteristic of the ground field. 32003 is used.", ch);
5686 #ifndef TEST_ZN_AS_ZP
5697 cf->has_simple_Inverse=1;
5705 const int pars =
pnn->listLength();
5722 if ((ch!=0) && (ch!=
IsPrime(ch)))
5724 WerrorS(
"too many parameters");
5732 WerrorS(
"parameter expected");
5751 else if ((
pn->name !=
NULL)
5758 float_len=(
int)(
long)
pnn->Data();
5759 float_len2=float_len;
5763 float_len2=(
int)(
long)
pnn->Data();
5788 param.par_name=(
const char*)
"i";
5790 param.par_name = (
const char*)
pnn->name;
5797 else if ((
pn->name !=
NULL) && (
strcmp(
pn->name,
"integer") == 0))
5801 unsigned int modExponent = 1;
5813 modExponent = (
long)
pnn->Data();
5833 WerrorS(
"Wrong ground ring specification (module is 1)");
5836 if (modExponent < 1)
5838 WerrorS(
"Wrong ground ring specification (exponent smaller than 1");
5843 if (modExponent > 1 &&
cf ==
NULL)
5845 if ((
mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*
sizeof(
unsigned long)))
5856 WerrorS(
"modulus must not be 0 or parameter not allowed");
5862 info.exp= modExponent;
5871 WerrorS(
"modulus must not be 0 or parameter not allowed");
5877 info.exp= modExponent;
5887 if (r->qideal==
NULL)
5894 else if (
IDELEMS(r->qideal)==1)
5903 WerrorS(
"algebraic extension ring must have one minpoly");
5909 WerrorS(
"Wrong or unknown ground field specification");
5915 Print(
"pn[%p]: type: %d [%s]: %p, name: %s", (
void*)
p,
p->Typ(),
Tok2Cmdname(
p->Typ()),
p->Data(), (
p->name ==
NULL?
"NULL" :
p->name) );
5937 WerrorS(
"Invalid ground field specification");
5949 int l=
rv->listLength();
5961 WerrorS(
"name of ring variable expected");
6019 int l=
rv->listLength();
6031 WerrorS(
"name of ring variable expected");
6051 Werror(
"variable %d (%s) not in basering",
j+1,
R->names[
j]);
6064 for(
j=
R->block0[
i];
j<=
R->block1[
i];
j++)
6086 R->wvhdl[
i][perm[
j]-
R->block0[
i]]=
6113 R->order[
j-1]=
R->order[
j];
6114 R->block0[
j-1]=
R->block0[
j];
6115 R->block1[
j-1]=
R->block1[
j];
6117 R->wvhdl[
j-1]=
R->wvhdl[
j];
6125 while (
R->order[n]==0) n--;
6128 if (
R->block1[n] !=
R->N)
6139 R->block0[n] <=
R->N)
6141 R->block1[n] =
R->N;
6145 Werror(
"mismatch of number of vars (%d) and ordering (%d vars) in block %d",
6146 R->N,
R->block1[n],n);
6175 if ((r->ref<=0)&&(r->order!=
NULL))
6185 if (
j==0)
WarnS(
"killing the basering for level 0");
6190 while (r->idroot!=
NULL)
6193 killhdl2(r->idroot,&(r->idroot),r);
6239 Warn(
"deleting denom_list for ring change from %s",
IDID(
h));
6316 for(
i=
I->nrows*
I->ncols-1;
i>=0;
i--)
6328 switch (
p->language)
6337 if(
p->libname!=
NULL)
6338 Print(
",%s",
p->libname);
6353 tmp_in.data=(
void*)(
long)(*aa)[
i];
6361 Werror(
"apply fails at index %d",
i+1);
6391 res->data=(
void *)
l;
6398 for(
int i=0;
i<=
aa->nr;
i++)
6410 Werror(
"apply fails at index %d",
i+1);
6441 WerrorS(
"first argument to `apply` must allow an index");
6487 snprintf(
ss,len,
"parameter def %s;return(%s);\n",a,
s);
6552 snprintf(
buf,250,
"wrong length of parameters(%d), expected ",t);
6555 for(
int i=1;
i<=
T[0];
i++)
6578 for(
int i=1;
i<=
l;
i++,args=args->
next)
6584 || (t!=args->
Typ()))
6607 Print(
" %s (%s) -> %s",
Rational pow(const Rational &a, int e)
struct for passing initialization parameters to naInitChar
void atSet(idhdl root, char *name, void *data, int typ)
void * atGet(idhdl root, const char *name, int t, void *defaultReturnValue)
static int si_max(const int a, const int b)
static int si_min(const int a, const int b)
CanonicalForm map(const CanonicalForm &primElem, const Variable &alpha, const CanonicalForm &F, const Variable &beta)
map from to such that is mapped onto
unsigned char * proc[NUM_PROC]
poly singclap_resultant(poly f, poly g, poly x, const ring r)
ideal singclap_factorize(poly f, intvec **v, int with_exps, const ring r)
matrix singclap_irrCharSeries(ideal I, const ring r)
int * Zp_roots(poly p, const ring r)
idhdl get(const char *s, int lev)
void show(int mat=0, int spaces=0) const
virtual ideal getMatrix()
complex root finder for univariate polynomials based on laguers algorithm
gmp_complex * getRoot(const int i)
void fillContainer(number *_coeffs, number *_ievpoint, const int _var, const int _tdg, const rootType _rt, const int _anz)
bool solver(const int polishmode=PM_NONE)
Linear Programming / Linear Optimization using Simplex - Algorithm.
BOOLEAN mapFromMatrix(matrix m)
matrix mapToMatrix(matrix m)
Class used for (list of) interpreter objects.
void CleanUp(ring r=currRing)
INLINE_THIS void Init(int l=0)
Base class for solving 0-dim poly systems using u-resultant.
resMatrixBase * accessResMat()
vandermonde system solver for interpolating polynomials from their values
Coefficient rings, fields and other domains suitable for Singular polynomials.
static FORCE_INLINE long n_Int(number &n, const coeffs r)
conversion of n to an int; 0 if not possible in Z/pZ: the representing int lying in (-p/2 ....
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
@ n_R
single prescision (6,6) real numbers
@ n_Q
rational (GMP) numbers
@ n_Znm
only used if HAVE_RINGS is defined
@ n_algExt
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic
@ n_Zn
only used if HAVE_RINGS is defined
@ n_long_R
real floating point (GMP) numbers
@ n_Z2m
only used if HAVE_RINGS is defined
@ n_transExt
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
@ n_Z
only used if HAVE_RINGS is defined
@ n_long_C
complex floating point (GMP) numbers
static FORCE_INLINE BOOLEAN nCoeff_is_numeric(const coeffs r)
static FORCE_INLINE void n_MPZ(mpz_t result, number &n, const coeffs r)
conversion of n to a GMP integer; 0 if not possible
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
static FORCE_INLINE char const ** n_ParameterNames(const coeffs r)
Returns a (const!) pointer to (const char*) names of parameters.
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL
const unsigned short fftable[]
static FORCE_INLINE void nSetChar(const coeffs r)
initialisations after each ring change
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
static FORCE_INLINE char * nCoeffName(const coeffs cf)
static FORCE_INLINE number n_InitMPZ(mpz_t n, const coeffs r)
conversion of a GMP integer to number
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
static FORCE_INLINE BOOLEAN nCoeff_is_long_C(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Creation data needed for finite fields.
const CanonicalForm int s
const Variable & v
< [in] a sqrfree bivariate poly
int search(const CFArray &A, const CanonicalForm &F, int i, int j)
search for F in A between index i and j
char name(const Variable &v)
void WerrorS(const char *s)
VAR char my_yylinebuf[80]
char *(* fe_fgets_stdin)(const char *pr, char *s, int size)
void newBuffer(char *s, feBufferTypes t, procinfo *pi, int lineno)
ideal maMapIdeal(const ideal map_id, const ring preimage_r, const ideal image_id, const ring image_r, const nMapFunc nMap)
polynomial map for ideals/module/matrix map_id: the ideal to map map_r: the base ring for map_id imag...
int iiTestConvert(int inputType, int outputType)
const char * iiTwoOps(int t)
const char * Tok2Cmdname(int tok)
static int RingDependend(int t)
void scComputeHC(ideal S, ideal Q, int ak, poly &hEdge)
void hIndMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
void hDimSolve(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
void hIndAllMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
void hKill(monf xmem, int Nvar)
void hDelete(scfmon ev, int ev_length)
void hPure(scfmon stc, int a, int *Nstc, varset var, int Nvar, scmon pure, int *Npure)
void hSupp(scfmon stc, int Nstc, varset var, int *Nvar)
void hLexR(scfmon rad, int Nrad, varset var, int Nvar)
scfmon hInit(ideal S, ideal Q, int *Nexist)
void hRadical(scfmon rad, int *Nrad, int Nvar)
#define idDelete(H)
delete an ideal
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
static BOOLEAN idIsZeroDim(ideal i)
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
#define idMaxIdeal(D)
initialise the maximal ideal (at 0)
int idGetNumberOfChoise(int t, int d, int begin, int end, int *choise)
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)
STATIC_VAR int * multiplicity
static BOOLEAN length(leftv result, leftv arg)
intvec * ivCopy(const intvec *o)
#define IMATELEM(M, I, J)
int IsCmd(const char *n, int &tok)
BOOLEAN iiExprArith1(leftv res, leftv a, int op)
BOOLEAN jjPROC(leftv res, leftv u, leftv v)
BOOLEAN iiAssign(leftv l, leftv r, BOOLEAN toplevel)
BOOLEAN iiConvert(int inputType, int outputType, int index, leftv input, leftv output, const struct sConvertTypes *dConvertTypes)
idhdl ggetid(const char *n)
void killhdl2(idhdl h, idhdl *ih, ring r)
idhdl enterid(const char *s, int lev, int t, idhdl *root, BOOLEAN init, BOOLEAN search)
VAR proclevel * procstack
idhdl packFindHdl(package r)
EXTERN_VAR omBin sleftv_bin
INST_VAR sleftv iiRETURNEXPR
char * iiGetLibProcBuffer(procinfo *pi, int part)
procinfo * iiInitSingularProcinfo(procinfov pi, const char *libname, const char *procname, int, long pos, BOOLEAN pstatic)
lists rDecompose(const ring r)
@ semicListWrongNumberOfNumerators
@ semicListFirstElementWrongType
@ semicListSecondElementWrongType
@ semicListFourthElementWrongType
@ semicListWrongNumberOfDenominators
@ semicListThirdElementWrongType
@ semicListWrongNumberOfMultiplicities
@ semicListFifthElementWrongType
@ semicListSixthElementWrongType
BOOLEAN iiApplyINTVEC(leftv res, leftv a, int op, leftv proc)
BOOLEAN jjVARIABLES_P(leftv res, leftv u)
lists rDecompose_list_cf(const ring r)
int iiOpsTwoChar(const char *s)
BOOLEAN spaddProc(leftv result, leftv first, leftv second)
BOOLEAN jjMINRES(leftv res, leftv v)
BOOLEAN killlocals_list(int v, lists L)
BOOLEAN iiParameter(leftv p)
STATIC_VAR BOOLEAN iiNoKeepRing
int iiDeclCommand(leftv sy, leftv name, int lev, int t, idhdl *root, BOOLEAN isring, BOOLEAN init_b)
static void rRenameVars(ring R)
void iiCheckPack(package &p)
BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
check a list of arguemys against a given field of types return TRUE if the types match return FALSE (...
BOOLEAN iiApply(leftv res, leftv a, int op, leftv proc)
void list_cmd(int typ, const char *what, const char *prefix, BOOLEAN iterate, BOOLEAN fullname)
VAR BOOLEAN iiDebugMarker
ring rInit(leftv pn, leftv rv, leftv ord)
leftv iiMap(map theMap, const char *what)
int iiRegularity(lists L)
BOOLEAN rDecompose_CF(leftv res, const coeffs C)
static void rDecomposeC_41(leftv h, const coeffs C)
void iiMakeResolv(resolvente r, int length, int rlen, char *name, int typ0, intvec **weights)
BOOLEAN iiARROW(leftv r, char *a, char *s)
BOOLEAN semicProc3(leftv res, leftv u, leftv v, leftv w)
BOOLEAN syBetti1(leftv res, leftv u)
BOOLEAN iiApplyLIST(leftv res, leftv a, int op, leftv proc)
static void rDecomposeC(leftv h, const ring R)
int exprlist_length(leftv v)
BOOLEAN mpKoszul(leftv res, leftv c, leftv b, leftv id)
poly iiHighCorner(ideal I, int ak)
BOOLEAN spectrumfProc(leftv result, leftv first)
lists listOfRoots(rootArranger *self, const unsigned int oprec)
static void jjINT_S_TO_ID(int n, int *e, leftv res)
lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
BOOLEAN jjCHARSERIES(leftv res, leftv u)
void rDecomposeCF(leftv h, const ring r, const ring R)
BOOLEAN iiApplyIDEAL(leftv, leftv, int, leftv)
static void list1(const char *s, idhdl h, BOOLEAN c, BOOLEAN fullname)
void list_error(semicState state)
BOOLEAN mpJacobi(leftv res, leftv a)
const char * iiTwoOps(int t)
BOOLEAN iiBranchTo(leftv, leftv args)
BOOLEAN jjBETTI2_ID(leftv res, leftv u, leftv v)
BOOLEAN iiTestAssume(leftv a, leftv b)
void iiSetReturn(const leftv source)
BOOLEAN iiAssignCR(leftv r, leftv arg)
BOOLEAN spmulProc(leftv result, leftv first, leftv second)
spectrumState spectrumCompute(poly h, lists *L, int fast)
idhdl rFindHdl(ring r, idhdl n)
syStrategy syConvList(lists li)
BOOLEAN spectrumProc(leftv result, leftv first)
BOOLEAN iiDefaultParameter(leftv p)
void rComposeC(lists L, ring R)
BOOLEAN iiCheckRing(int i)
#define BREAK_LINE_LENGTH
static void rDecomposeRing_41(leftv h, const coeffs C)
spectrumState spectrumStateFromList(spectrumPolyList &speclist, lists *L, int fast)
BOOLEAN syBetti2(leftv res, leftv u, leftv w)
ring rSubring(ring org_ring, sleftv *rv)
BOOLEAN kWeight(leftv res, leftv id)
static leftv rOptimizeOrdAsSleftv(leftv ord)
BOOLEAN rSleftvOrdering2Ordering(sleftv *ord, ring R)
static BOOLEAN rComposeOrder(const lists L, const BOOLEAN check_comp, ring R)
spectrum spectrumFromList(lists l)
static idhdl rSimpleFindHdl(const ring r, const idhdl root, const idhdl n)
static void iiReportTypes(int nr, int t, const short *T)
void rDecomposeRing(leftv h, const ring R)
BOOLEAN jjRESULTANT(leftv res, leftv u, leftv v, leftv w)
static BOOLEAN iiInternalExport(leftv v, int toLev)
static void rDecompose_23456(const ring r, lists L)
void copy_deep(spectrum &spec, lists l)
void killlocals_rec(idhdl *root, int v, ring r)
semicState list_is_spectrum(lists l)
static void killlocals0(int v, idhdl *localhdl, const ring r)
BOOLEAN semicProc(leftv res, leftv u, leftv v)
ring rCompose(const lists L, const BOOLEAN check_comp, const long bitmask, const int isLetterplace)
BOOLEAN iiApplyBIGINTMAT(leftv, leftv, int, leftv)
BOOLEAN jjBETTI2(leftv res, leftv u, leftv v)
const char * lastreserved
static BOOLEAN rSleftvList2StringArray(leftv sl, char **p)
lists syConvRes(syStrategy syzstr, BOOLEAN toDel, int add_row_shift)
BOOLEAN iiWRITE(leftv, leftv v)
void paPrint(const char *n, package p)
static resolvente iiCopyRes(resolvente r, int l)
BOOLEAN kQHWeight(leftv res, leftv v)
void rComposeRing(lists L, ring R)
BOOLEAN iiExport(leftv v, int toLev)
BOOLEAN jjBETTI(leftv res, leftv u)
void spectrumPrintError(spectrumState state)
lists getList(spectrum &spec)
BOOLEAN jjVARIABLES_ID(leftv res, leftv u)
static BOOLEAN rComposeVar(const lists L, ring R)
const struct sValCmd1 dArith1[]
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
VAR denominator_list DENOMINATOR_LIST
BOOLEAN nc_CallPlural(matrix cc, matrix dd, poly cn, poly dn, ring r, bool bSetupQuotient, bool bCopyInput, bool bBeQuiet, ring curr, bool dummy_ring=false)
returns TRUE if there were errors analyze inputs, check them for consistency detects nc_type,...
char * lString(lists l, BOOLEAN typed, int dim)
BOOLEAN lRingDependend(lists L)
resolvente liFindRes(lists L, int *len, int *typ0, intvec ***weights)
lists liMakeResolv(resolvente r, int length, int reallen, int typ0, intvec **weights, int add_row_shift)
void maFindPerm(char const *const *const preim_names, int preim_n, char const *const *const preim_par, int preim_p, char const *const *const names, int n, char const *const *const par, int nop, int *perm, int *par_perm, n_coeffType ch)
BOOLEAN maApplyFetch(int what, map theMap, leftv res, leftv w, ring preimage_r, int *perm, int *par_perm, int P, nMapFunc nMap)
static matrix mu(matrix A, const ring R)
matrix mpNew(int r, int c)
create a r x c zero-matrix
matrix mp_Copy(matrix a, const ring r)
copies matrix a (from ring r to r)
#define MATELEM(mat, i, j)
1-based access to matrix
void mult(unsigned long *result, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
ideal loNewtonPolytope(const ideal id)
EXTERN_VAR size_t gmp_output_digits
uResultant::resMatType determineMType(int imtype)
mprState mprIdealCheck(const ideal theIdeal, const char *name, uResultant::resMatType mtype, BOOLEAN rmatrix=false)
char * complexToStr(gmp_complex &c, const unsigned int oprec, const coeffs src)
gmp_float sqrt(const gmp_float &a)
void setGMPFloatDigits(size_t digits, size_t rest)
Set size of mantissa digits - the number of output digits (basis 10) the size of mantissa consists of...
BOOLEAN nuLagSolve(leftv res, leftv arg1, leftv arg2, leftv arg3)
find the (complex) roots an univariate polynomial Determines the roots of an univariate polynomial us...
BOOLEAN nuVanderSys(leftv res, leftv arg1, leftv arg2, leftv arg3)
COMPUTE: polynomial p with values given by v at points p1,..,pN derived from p; more precisely: consi...
BOOLEAN nuMPResMat(leftv res, leftv arg1, leftv arg2)
returns module representing the multipolynomial resultant matrix Arguments 2: ideal i,...
BOOLEAN loSimplex(leftv res, leftv args)
Implementation of the Simplex Algorithm.
BOOLEAN loNewtonP(leftv res, leftv arg1)
compute Newton Polytopes of input polynomials
BOOLEAN nuUResSolve(leftv res, leftv args)
solve a multipolynomial system using the u-resultant Input ideal must be 0-dimensional and (currRing-...
The main handler for Singular numbers which are suitable for Singular polynomials.
#define nPrint(a)
only for debug, over any initalized currRing
#define SHORT_REAL_LENGTH
#define omFreeSize(addr, size)
#define omCheckAddr(addr)
#define omReallocSize(addr, o_size, size)
#define omCheckAddrSize(addr, size)
#define omFreeBin(addr, bin)
#define omFreeBinAddr(addr)
#define omRealloc0Size(addr, o_size, size)
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
static int pLength(poly a)
#define __pp_Mult_nn(p, n, r)
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
static void p_Setm(poly p, const ring r)
static void p_Delete(poly *p, const ring r)
static poly p_Init(const ring r, omBin bin)
static poly p_Copy(poly p, const ring r)
returns a copy of p
static long p_Totaldegree(poly p, const ring r)
#define __p_Mult_nn(p, n, r)
void rChangeCurrRing(ring r)
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Compatibility layer for legacy polynomial operations (over currRing)
static long pTotaldegree(poly p)
#define pIsConstant(p)
like above, except that Comp must be 0
#define pCmp(p1, p2)
pCmp: args may be NULL returns: (p2==NULL ? 1 : (p1 == NULL ? -1 : p_LmCmp(p1, p2)))
#define pGetVariables(p, e)
#define pGetExp(p, i)
Exponent.
#define pCopy(p)
return a copy of the poly
ideal idrCopyR(ideal id, ring src_r, ring dest_r)
void PrintS(const char *s)
void Werror(const char *fmt,...)
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
const char * rSimpleOrdStr(int ord)
int rTypeOfMatrixOrder(const intvec *order)
ring rAssure_HasComp(const ring r)
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
BOOLEAN rCheckIV(const intvec *iv)
rRingOrder_t rOrderName(char *ordername)
void rDelete(ring r)
unconditionally deletes fields in r
ring rDefault(const coeffs cf, int N, char **n, int ord_size, rRingOrder_t *ord, int *block0, int *block1, int **wvhdl, unsigned long bitmask)
BOOLEAN rEqual(ring r1, ring r2, BOOLEAN qr)
returns TRUE, if r1 equals r2 FALSE, otherwise Equality is determined componentwise,...
void rSetSyzComp(int k, const ring r)
static BOOLEAN rField_is_R(const ring r)
static BOOLEAN rField_is_Zp_a(const ring r)
static BOOLEAN rField_is_Z(const ring r)
static BOOLEAN rField_is_Zp(const ring r)
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
static BOOLEAN rField_is_long_C(const ring r)
static int rBlocks(const ring r)
static ring rIncRefCnt(ring r)
static BOOLEAN rField_is_Zn(const ring r)
static int rPar(const ring r)
(r->cf->P)
static int rInternalChar(const ring r)
static BOOLEAN rIsLPRing(const ring r)
@ ringorder_a64
for int64 weights
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
@ ringorder_IS
Induced (Schreyer) ordering.
static BOOLEAN rField_is_Q_a(const ring r)
static BOOLEAN rField_is_Q(const ring r)
static void rDecRefCnt(ring r)
static char const ** rParameter(const ring r)
(r->cf->parameter)
static BOOLEAN rField_is_long_R(const ring r)
static BOOLEAN rField_is_numeric(const ring r)
static BOOLEAN rField_is_GF(const ring r)
static short rVar(const ring r)
#define rVar(r) (r->N)
BOOLEAN rHasLocalOrMixedOrdering(const ring r)
#define rField_is_Ring(R)
int status int void size_t count
int status int void * buf
BOOLEAN slWrite(si_link l, leftv v)
ideal idInit(int idsize, int rank)
initialise an ideal / module
intvec * id_QHomWeight(ideal id, const ring r)
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
BOOLEAN hasAxis(ideal J, int k, const ring r)
int hasOne(ideal J, const ring r)
BOOLEAN ringIsLocal(const ring r)
static BOOLEAN hasConstTerm(poly h, const ring r)
poly computeWC(const newtonPolygon &np, Rational max_weight, const ring r)
static BOOLEAN hasLinearTerm(poly h, const ring r)
void computeNF(ideal stdJ, poly hc, poly wc, spectrumPolyList *NF, const ring r)
INST_VAR sleftv sLastPrinted
intvec * syBetti(resolvente res, int length, int *regularity, intvec *weights, BOOLEAN tomin, int *row_shift)
void syMinimizeResolvente(resolvente res, int length, int first)
void syKillComputation(syStrategy syzstr, ring r=currRing)
resolvente syReorder(resolvente res, int length, syStrategy syzstr, BOOLEAN toCopy=TRUE, resolvente totake=NULL)
intvec * syBettiOfComputation(syStrategy syzstr, BOOLEAN minim=TRUE, int *row_shift=NULL, intvec *weights=NULL)
void syKillEmptyEntres(resolvente res, int length)
struct for passing initialization parameters to naInitChar
THREAD_VAR double(* wFunctional)(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
void wCall(poly *s, int sl, int *x, double wNsqr, const ring R)
double wFunctionalBuch(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)